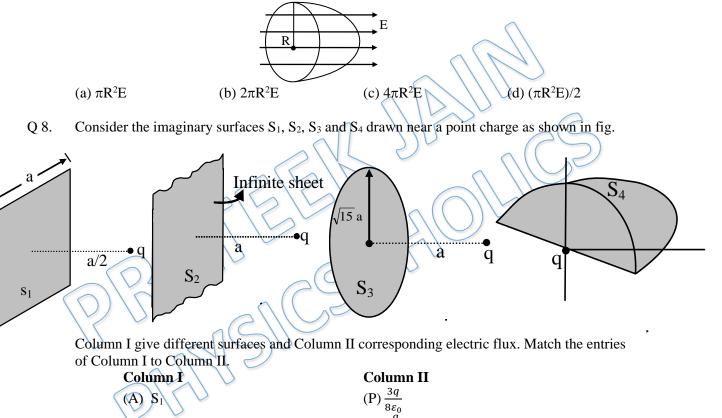

DPP – 6 (Electrostatics)

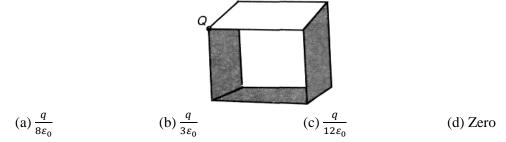
Video Solution on Website:https://physicsaholics.com/home/courseDetails/93 https://youtu.be/2BzlopVh9C8 Video Solution on YouTube:-Written Solution on Website:https://physicsaholics.com/note/notesDetalis/39 Q1. A sphere of radius R contains a total charge +Q which is uniformly distributed throughout its volume. At a distance 2R from the centre of sphere, a particle having charge +q is fixed. P is a point on surface of sphere and lying on line joining the centre of sphere and point charge. Distance of point from P where net electric field is zero, is R/2. Then q may be (a) $\frac{9Q}{8}$ $(c)^{\frac{1}{2}}$ (d) 20 (b) O Consider a solid non conducting sphere of radius R. There is uniform volume charge density Q 2. ρ from r = 0 to r = $\frac{R}{2}$, and from r = $\frac{R}{2}$ and r = R, the volume charge density is ρ . If electric field at $r = \frac{R}{2}$ and r = R have same magnitude then R ρ_1 p_j R/2 (b) 8/3 (a) 4/1(c) 7/3 (d) 5/4

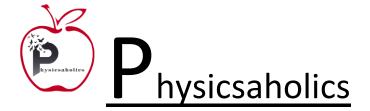
Q 3. An infinite long line charge of charge per unit length l is passing through one the edge of a cube. Length of edge of the cube is l. Total flux linked with

Q 4. Two point charges 4q and -q are placed at some distance. What fraction of field lines originating from 4q will terminate to q.[Assume absence of any other charge in space]



Q 5. Consider a triangular surface whose vertices are three points having co-ordinate A (2a, 0, 0), B(0, a, 0), C(0, 0, a). If there is a uniform electric field $E_0 \hat{i} + 2E_0 \hat{j} + 3E_0 \hat{k}$ then flux linked to triangular surface ABC is-(a) $\frac{7E_0 a^2}{2}$ (b) $3E_0 a^2$ (c) $\frac{11E_0 a^2}{2}$ (d) Zero


- Q 6. A cylinder of radius (R) and length (L) is placed in a uniform electrical field (E) parallel to the axis of the cylinder. The total flux for the surface of the cylinder is given by (a) $2\pi R^2 E$ (b) $\pi R^2 E$ (c) $\frac{\pi R^2 + \pi R^2}{E}$ (d) zero
- Q 7. A hemisphere (radius R) is placed in electric field as shown in fig. Total outgoing flux is -



	Column L
$(\mathbf{A}) \mathbf{S}_1$	$(\mathbf{P})\frac{3q}{8\varepsilon_0}$
$(\mathbf{B}) \mathbf{S}_2$	$(\mathbf{Q}) \frac{q}{2\varepsilon_0}$
(C) S ₃	$(\mathbf{R})\frac{q}{6\varepsilon_0}$
(D) S ₄	$(S)\frac{q}{4\varepsilon_0}$

а

Q 9. If a point charge is placed at vertex of cube then flux linked to surface shaded in figure

- Q 10. In a region of space, the electric field is in the x-direction and proportional to x, i.e., $\vec{E} = E_0 x \hat{\imath}$. Consider an imaginary cubical volume of edge a, with its edges parallel to the axes of coordinates. The charge inside this volume is (a) zero (b) $\varepsilon_0 E_0 a^3$ (c) $\frac{1}{\varepsilon_0} E_0 a^3$ (d) $\frac{1}{6} \varepsilon_0 E_0 a^2$
- Q 11. Charges Q₁ and Q₂ are inside and outside respectively of a closed surface S. Let E be the field at any point on S and \$\overline\$ be the flux of E over S. Then choose the correct statements
 (a) if Q₁ changes both and E and \$\overline\$ will change
 (b) if Q₂ changes, E will change but \$\overline\$ will not change
 (c) if Q₁ = 0 and Q₂ = 0, then E ≠ 0 but \$\overline\$ = 0
 (d) if Q₁ = 0 and Q₂ = 0, then E = 0 and \$\overline\$ = 0
- Q 12. In a spherical volume of radius R, volume charge density $\rho = r^3$ (where r is distance from centre). Electric Field at distance r (r < R) from centre is (a) $\frac{r^4}{5\epsilon_0}$ (b) $\frac{r^4}{4\epsilon_0}$ (c) $\frac{r^4}{6\epsilon_0}$ (d) $\frac{r^4}{3\epsilon_0}$
- Q 13. In a nonuniformly charged solid sphere of radius R electric field at distance r from centre is E = r^2 in radially outward direction. Charge density at distance r from centre (r < R) is (a) $\varepsilon_0 r$ (b) $4\varepsilon_0 r$ (c) $2\varepsilon_0$ (d) $\varepsilon_0 r^2$

Answer Key

Q.1 a, c	Q.2 c	Q.3 b, c, d	Q.4 a	Q.5 c
Q.6 d	Q.7 a	Q.9 c	Q.10 b	Q.11 a, b, d
Q.12 c	Q.13 b			

$Q.8 \text{ A} \rightarrow \text{R}; B \rightarrow Q; C \rightarrow \text{P}; D \rightarrow \text{S}$

× × ×	Interactiv Structured Live Tests Personal (
24 months No cost EMI		2.514	33/mo 56,000	>	
18 months No cost EMI			25/mo ₹47,250	>	
12 months No cost EMI			08/mo ₹38,500	>	
6 months No cost EMI		63	67/mo £28,000	>	
To be paid as a one-time payment View all plans					
Add a re	ferral code)		APPLY	

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS	ICONIC *	
S	India's Best Educators		
8	Interactive Live Classes		
3	Structured Courses & PDFs		
S e	Live Tests & Quizzes		
- 492×	Personal	Coach	
×	Study Plo	inner	
A740.2			
24 months		₹2,100/mo	>
No cost EMI		+10% OFF ₹50,400	
18 months		₹2,363/mo	>
No cost EMI		+10% OFF ₹42,525	
12 months		₹2.888/maa	
No cost EMI		₹2,888/mo +10% OFF ₹34,650	>
NO COST EMI		+10% OFF (34,630	
6 months		₹4,200/mo	
No cost EMI		+10% OFF ₹25,200	>
To be paid as a one-time payment			
	Viev	v all plans	
Awesom	e! PHYSIC	SLIVE code applied	×

Written Solution

DPP- 6 Electrostatics : Gauss's Law By Physicsaholics Team

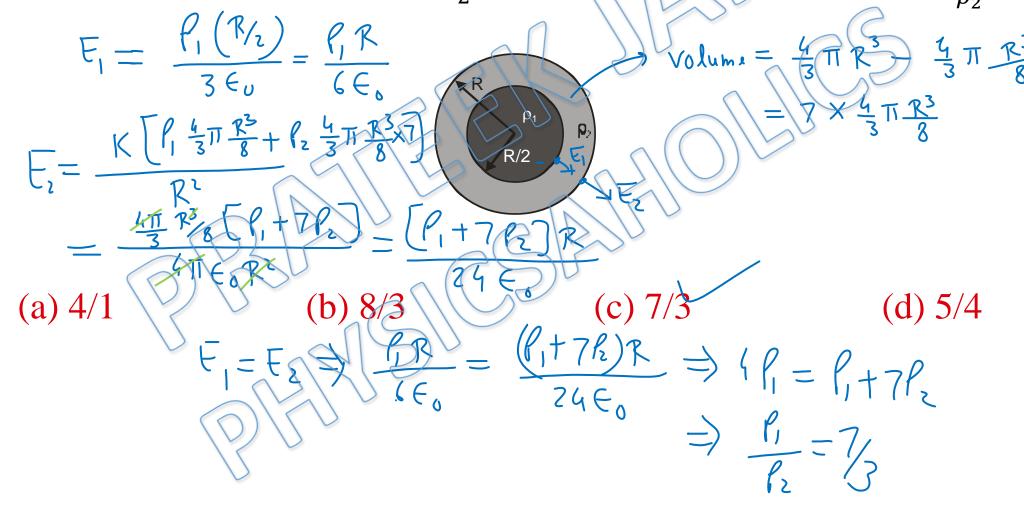
Q1) A sphere of radius R contains a total charge +Q which is uniformly distributed throughout its volume. At a distance 2R from the centre of sphere, a particle having charge +q is fixed. P is a point on surface of sphere and lying on line joining the centre of sphere and point charge. Distance of point from P where net electric field is zero , is R/2. Then q may be 3R/R

 $\mathbf{x} = \mathbf{0}$

9/= 9 &

9Q

(a)


E=0

x=2R

3R

(d) 2Q

Q2) Consider a solid non conducting sphere of radius R. There is uniform volume charge density ρ_1 from r = 0 to $r = \frac{R}{2}$, and from $r = \frac{R}{2}$ and r = R the volume charge density is ρ_2 . If electric field at $r = \frac{R}{2}$ and r = R have same magnitude then $\frac{\rho_1}{\rho_2}$ is :

Q3) An infinite long line charge of charge per unit length λ is passing through one the edge of a cube. Length of edge of the cube is ℓ . Total flux linked with

$$4\beta = \frac{15}{60}$$

$$\Rightarrow \beta = \frac{15}{460}$$

$$4\beta = \frac{15}{60}$$

$$(5)inca field limits are field limit$$

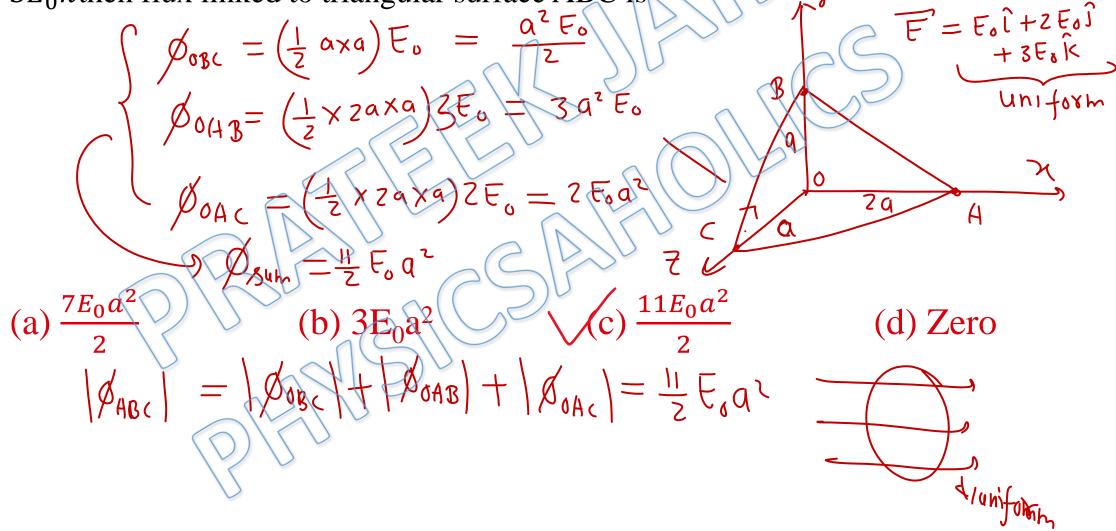
Q4) Two point charges 4q and -q are placed at some distance. What fraction of field lines originating from 4q will terminate to q.[Assume absence of any other charge in space]

nlines in

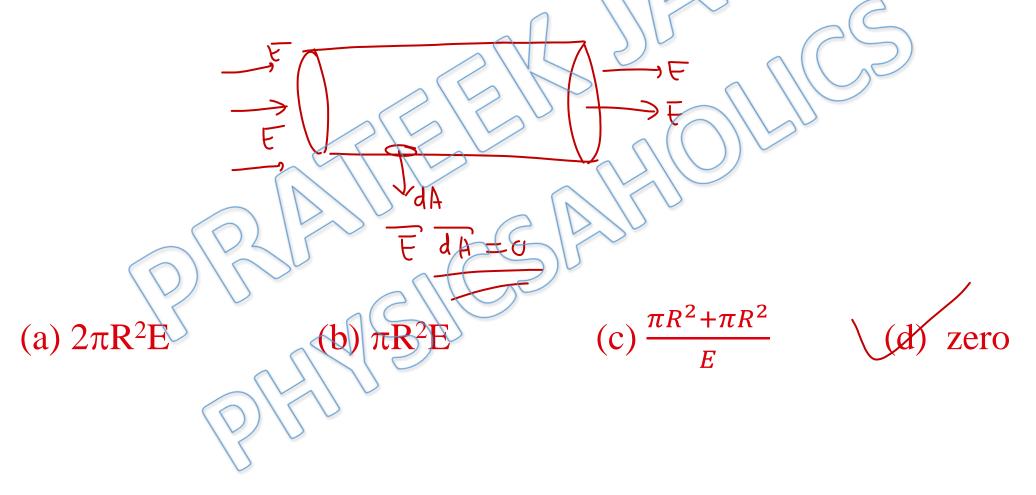
(b)3/4

(a) 1/4

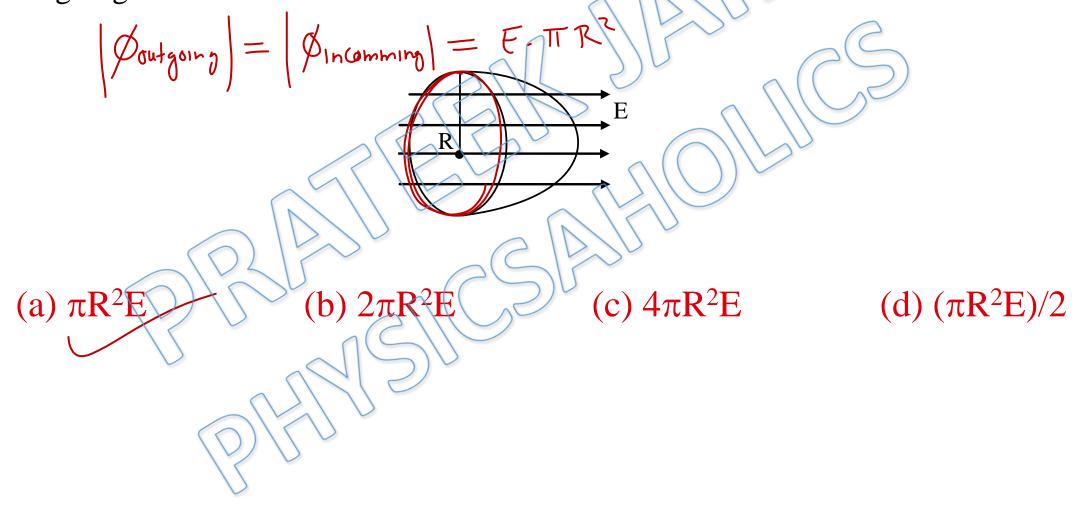
0+


(c) 1

1 Jd


INRS

 $(d) \frac{1}{2}$


Q5) Consider a triangular surface whose vertices are three points having co-ordinate A (2a, 0, 0), B(0, a, 0), C(0, 0, a). If there is a uniform electric field $E_0\hat{i} + 2E_0\hat{j} + 3E_0\hat{k}$ then flux linked to triangular surface ABC is-

Q6) A cylinder of radius (R) and length (L) is placed in a uniform electrical field (E) parallel to the axis of the cylinder. The total flux for the surface of the cylinder is given by -

Q7) A hemisphere (radius R) is placed in electric field as shown in fig. Total outgoing flux is -

Q8) Consider the imaginary surfaces S_1 , S_2 , S_3 and S_4 drawn near a point charge as shown in fig. 080 Ø= such

 $\sqrt{15}$ a

 S_3

bax+x

(logs

٩/

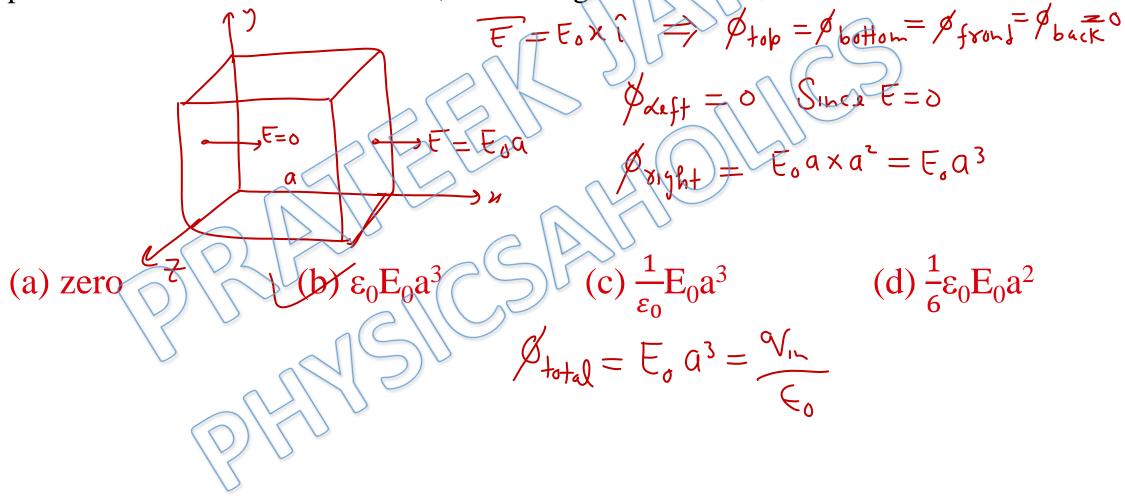
Completel

VGE 0 Column I gives different surfaces and Column II corresponding electric flux. Match the entries of Column I to Column II.

ZEO

Column I Column II 3*q* $\frac{8\varepsilon_0}{q}$ $\frac{2\varepsilon_0}{q}$ $(C) S_{3}$

Infinite sheet


 S_2

Centre of Cube

a/2

Q9) If a point charge is placed at vertex of cube then flux linked to surface shaded in figure $\varphi_{y_1y_1+1}$

Q10) In a region of space, the electric field is in the x-direction and proportional to x, i.e., $\vec{E} = E_0 x \hat{i}$. Consider an imaginary cubical volume of edge a, with its edges parallel to the axes of coordinates,. The charge inside this volume is

Q11) Charges Q_1 and Q_2 are inside and outside respectively of a closed surface *S*. Let *E* be the field at any point on *S* and ϕ be the flux of *E* over *S*. Then choose the correct statements

(a) if Q_1 changes both and E and ϕ will change (b) if Q_2 changes, E will change but ϕ will not change (c) if $Q_1 = 0$ and $Q_2 = 0$, then $E \neq 0$ but $\phi = 0$ (d) if $Q_1 = 0$ and $Q_2 = 0$, then E = 0 and $\phi = 0$ Q12) In a spherical volume of radius R , volume charge density $\rho = r^3$ (where r is distance from centre). Electric Field at distance r (r < R) from centre is

 $4\varepsilon_0$

(a) $\frac{1}{5\varepsilon_0}$

of - charge with in radius of

y2

2 660

GTEO 6 8

3*E*n

4П8

 $6\varepsilon_0$

(E

Q13) In a nonuniformly charged solid sphere of radius R electric field at distance r from centre is $E = r^2$ in radially outward direction. Charge density at distance r from centre (r < R) is $-\sqrt{\sqrt{n}}$

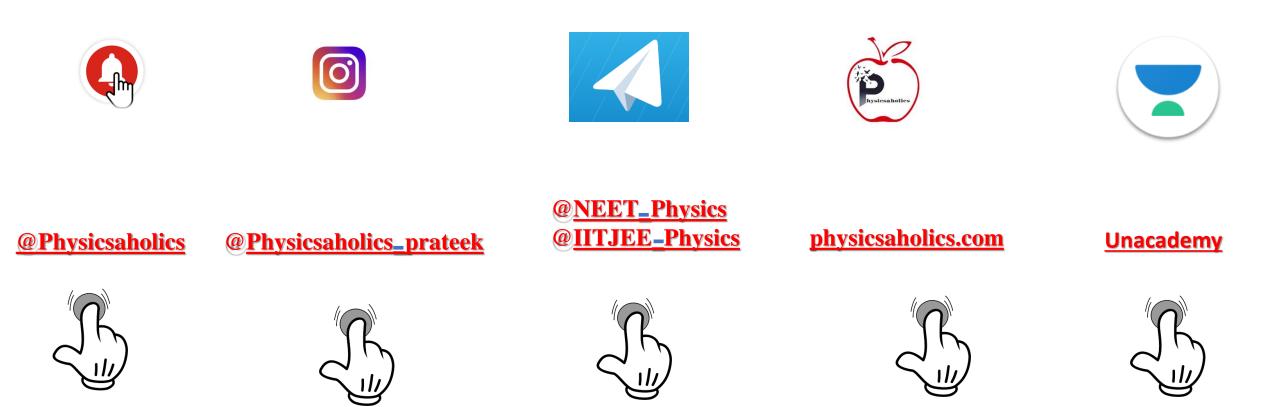
8+dr

0 Vin) 1 $3_{V_{1n}} = 4\pi\epsilon_0 \times 4\gamma^3 d\gamma$ $\int \frac{d}{\partial \varepsilon_0 r^2} \frac{d}{\partial \varepsilon_0 r^2}$ (harge on shall of thickness dr (e) $2\varepsilon_0$ (a) $\varepsilon_0 r$ $4\varepsilon_0 r$ $dY_{\rm m} = P 4\pi x^2 dx = 4\pi \epsilon_0 4 x^3 dx$ $= 4 \in \mathbb{Y}$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93


Video Solution on YouTube:-

https://youtu.be/2BzlopVh9C8

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

